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Abstract. A method is presented for calculating vibrational spectra of clusters using intra- and intermolec-
ular potential models of different origin. The two types of potentials are tuned and coupled to construct
a total cluster potential. The determination of minima on this cluster potential energy surface, and the
expansion of the potential about the minimum configurations makes it possible to apply standard spec-
troscopic methods. Starting from a normal mode analysis, harmonic and anharmonic frequency shifts are
calculated using perturbational and variational methods for methanol clusters from the dimer to the hex-
amer. The results using the empirical OPLS potential model are compared with each other, with the
harmonic line shift calculations for a calculated potential in the SCF approximation, and with the experi-
mental data. There is an improvement with respect to the results obtained so far, however, the need for a
better description of the intermolecular potential is pointed out.

PACS. 36.40.Mr Spectroscopy and geometrical structure of clusters

1 Introduction

The investigation of atomic and molecular clusters has at-
tracted much interest in recent years. One of reasons is
that more and more experimental and theoretical tools
have been developed that allow us to ask and to get an-
swered questions about the nature of cluster properties.
One of the most basic questions concerns the structure
of clusters, since it gives detailed information on the Po-
tential Energy Surface (PES) of the cluster constituents.
Spectroscopy is one of the most popular means to de-
termine the cluster structure. Many difficulties, however,
have to be overcome to get the desired data. A crucial
problem is the production of neutral clusters of a single
size. Buck and Meyer used the momentum transfer in a
scattering experiment to select the cluster size [1]. Sub-
sequently the selected cluster beam interacts with intense
infrared radiation of the frequency ν which leads to pre-
dissociation. The dissociated fraction is then determined
as a function of the frequency ν [2–5].

These experiments provide the main motivation for
the present study, that is to say, we want to investigate
the infrared spectrum of a cluster of well-defined size. In
our approach we assume that the experimental rotational-
vibrational spectra are still determined by fundamental
vibrational excitations of the energetically most stable
structures. Since rotational transitions are not resolved in
these experiments, we are only interested in pure vibra-
tional spectra that may include effects of the rotational
movement on the vibrational energy levels.

To calculate the vibrational spectrum of a cluster, a
PES is needed that includes intramolecular as well as in-
termolecular interactions of the cluster constituents. Ac-
curate, complete ab initio force fields are usually still too
expensive to map all areas of the PES which we are inter-
ested in. Accurate intramolecular force fields, however, are
available for many molecules as well as potentials that de-
scribe their intermolecular interactions. Since intramolec-
ular modes are excited in the experiments described above
we need to know about the influence of the intermolecular
interaction on the intramolecular modes, i.e. we are inter-
ested in line shifts of intramolecular modes with respect
to their monomer gas phase values.

There are several approaches available which are based
on monomer properties. Buck and Schmidt [6] extended
the idea of Buckingham [7] and treated the intermolecu-
lar interaction as an additional perturbation along with
anharmonic intramolecular terms for clusters of identi-
cal molecules. Beu removed some simplifications that were
assumed in reference [6] which yields different and quite
complicated formulae in second order perturbation theory
[8]. A further generalization of the method was developed
by Beu and Takeuchi [9] that includes the treatment of de-
generate intramolecular modes. Since all these approaches
start with uncoupled molecular Hamiltonians in zeroth or-
der perturbation theory, we call them comprisingly the
molecular approach (M).

Here, we follow a different approach that was used al-
ready by Reimers and Watts to calculate the structure and
vibrational spectra of small water clusters without giv-
ing explicit formulae for the cluster potential [10]. Again
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we start using decoupled intra- and intermolecular model
potentials. These potentials serve as input to construct a
complete cluster potential making thus available the whole
set of standard spectroscopical methods. Consequently we
call it the cluster approach (C). In Section 2 we give a
more rigorous formulation of the basic ideas concerning
the construction of the total cluster PES using intramolec-
ular force fields and analytical intermolecular potentials.
In Section 3 we describe the standard methods to cal-
culate the harmonic and anharmonic vibrational energy
levels of a given cluster. In Section 4 we present results
for methanol clusters from the dimer to the hexamer and
compare them with experimental data and calculations
in the Self-Consistent-Field (SCF) approximation [11]. In
Section 5 we finish with a discussion of our results.

2 The cluster Potential Energy Surface (PES)

In this section we want to describe how to combine op-
timized intra- and intermolecular interaction potentials
with each other. Since the ideal situation of potentials
which are tuned to each other will be rather rare, we elab-
orate on some further approximations.

2.1 Intramolecular potential

Usually the intramolecular potential is calculated in the
adiabatic Born-Oppenheimer approximation. The electron-
ic Schrödinger equation is solved for a given configuration
of the atomic nuclei. Calculating the electronic
energy eigenvalues on a grid around the minimum config-
uration of a molecule yields an ab initio PES. It is used to
determine the vibrational energy levels of the molecule.
Typically the intramolecular potential is expanded in a
series around the minimum configuration using internal
coordinates.

V intra=V0+
1

2

3N−6∑
i,j=1

fij(Ri−R0
i )(Rj−R0

j) + . . . , (1)

where V0 is the binding energy of the molecule (V0 is of no
importance in the further discussion and arbitrarily set to
zero), fij are quadratic force constants with respect to the
internal coordinates Ri, R0

i denotes the components of the
minimum configuration R0 = (R0

1, . . . ,R
0
3N−6), and N is

the number of atomic nuclei in the molecule. The 3N − 6
internal coordinates are given as analytical functions of
the 3N Cartesian coordinates

Ri=Ri(x1, . . . , x3N ; R0), i=1, . . . , 3N−6. (2)

In general, the coordinate transformation between internal
and Cartesian coordinates is nonlinear. Usually the trans-
formation is performed using so-called B-tensors. How-
ever, we simply use the analytical expressions connecting

internal and Cartesian coordinates. The intramolecular in-
teraction for M molecules is given by

V intra =
M∑
m

1

2

3Nm−6∑
i,j

fmij R
m
i (x1m, . . . , x3Nm ; Rm

0 )

×Rmj (x1m, . . . , x3Nm ; Rm
0 )

+
1

6

3Nm−6∑
i,j,k

fmijkR
m
i (x1m, . . . , x3Nm ; Rm

0 )

×Rmj (x1m, . . . , x3Nm ; Rm
0 )

×Rmk (x1m, . . . , x3Nm ; Rm
0 ) + . . .

)
, (3)

where fmij , fmijk are quadratic and cubic force constants
of molecule m with respect to the internal coordinates
Rmi , i = 1, . . . , 3Nm − 6 and R0

m is the minimum energy
configuration of molecule m. The molecules in the cluster
are completely decoupled.

2.2 Intermolecular potential

Solving the electronic Schrödinger equation not only gives
the energy eigenvalue but also the electronic wave function
of a molecule. The electronic wave functions of the molec-
ular minimum configurations are used to determine the
intermolecular interactions in a perturbational approach

Htot =
∑
m

Hm + U, (4)

whereHtot is the cluster Hamiltonian,Hm is the electronic
Hamiltonian of molecule m in the minimum configuration
and U describes all interactions between the molecules.

The unperturbed cluster Hamiltonian is given by
H(0) =

∑
Hm, the unperturbed electronic cluster wave

function is the product over all electronic molecular wave
functions. In second order perturbation theory the inter-
molecular interaction energy is typically split into the fol-
lowing four terms

U ≈ V int = V elec + V rep︸ ︷︷ ︸
1st order

+ V ind + V disp︸ ︷︷ ︸
2nd order

, (5)

where V elec and V rep are first order terms and describe the
electrostatic interaction energy of the permanent charge
distributions and the repulsion energy due to the over-
lap of the charge distributions. V ind and V disp are sec-
ond order terms and describe the induction and the dis-
persion energy. However, at this point we are more con-
cerned about the analytical representation of V int. Typi-
cally effective two-body interactions are sufficient, some-
times three-body and higher interactions are used.

V int =
M∑
m

M∑
n<m

umn(τm, τn)

+
M∑
m

M∑
n<m

M∑
o<n

umno(τm, τn, τo) + . . . , (6)
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where umn and umno denote molecular two-body and three-
body interactions and τm represents the center of mass
position and the orientation of molecule m. The functions
umn and umno can be represented by

umn(τm, τn) =

Nm∑
a

Nn∑
b

vmnab (Rma (τm), Rnb (τn))

+

Nm∑
a

Nn∑
b

Nn∑
c

vmnabc (Rma (τm), Rnb (τn), Rnc (τn)) + . . . (7)

umno(τm, τn, τo) =

Nm∑
a

Nn∑
b

No∑
c

vmnoabc

× (Rma (τm), Rnb (τn), Roc(τo)) + . . . , (8)

where vmnab denotes two-body interactions between site a
in molecule m and site b in molecule n, vmnabc denotes three-
body interactions between sites a, b, and c in molecules m
and n, and vmnoabc denotes three-body interactions between
sites a, b, and c in molecules m, n, and o. Rma (τm) is the
position of site a in molecule m and depends on the ori-
entation and center of mass position τm of molecule m.

Introducing
∑M
m=1Nm boundary conditions which guar-

antee the geometry of the molecules, equation (6) can be
rewritten as

V int=
M∑
m

M∑
n<m

(
Nm∑
a

Nn∑
b

vmnab (Rma , R
n
b ) + . . .

)
(9)

+
M∑
m

M∑
n<m

M∑
o<n

(
Nm∑
a

Nn∑
b

No∑
c

vmnoabc (Rma , R
n
b , R

o
c) +...

)
+...

and

Rma −
0Rma = 0 a = 1, . . . , Nm , m = 1, . . . ,M,

(10)

where 0Rma is the position of site a in molecule m in the
minimum configuration. There is no difficulty in finding all
necessary boundary conditions, because we can simply use
the definitions of the internal coordinates. At this point
we can introduce a formal extension to V int

V int =
M∑
m

(
Nm∑
a

Nm∑
b<a

vmab (Rma , R
m
b )

+

Nm∑
a

Nm∑
b<a

Nm∑
c<b

vmabc (Rma , R
m
b , R

m
c ) + . . .

)

+
M∑
m

M∑
n<m

(
Nm∑
a

Nn∑
b

vmnab (Rma , R
n
b ) + . . .

)
(11)

+
M∑
m

M∑
n<m

M∑
o<n

(
Nm∑
a

Nn∑
b

No∑
c

vmnoabc (Rma , R
n
b , R

o
c) +...

)
+...

and

Rma −
0Rma = 0 a = 1, . . . , Nm , m = 1, . . . ,M,

(12)

since the expression in the first line is equal to zero as
long as the boundary conditions hold true. We can eas-
ily identify the intramolecular interactions in this term.
Inserting the intramolecular force fields of equation (3)
into this expression and lifting all boundary conditions
of equations (12) defines the total cluster potential V tot.
After some rearranging V tot can be written as

V tot =
N∑
a

N∑
b<a

Vab(Ra, Rb)

+
N∑
a

N∑
b<a

N∑
c<b

Vabc(Ra, Rb, Rc) + . . . , (13)

where N is the number of interaction sites in the cluster
and Vab, Vabc denote two-body and three-body site-site
interactions in the cluster.

We speak of tuned intra- and intermolecular poten-
tials, if both types of models depend on the same set of
interaction sites. As we are interested in vibrations of the
atomic nuclei typically those models are of interest that
explicitly depend on the atomic sites which determine the
vibrations of interest. Ideally for each atomic nucleus a
potential site is defined.

Unfortunately intra- and intermolecular potentials are
usually not tuned to each other so that further approxima-
tions have to be introduced. 1) The molecular minimum
configurations Rm

0 are not the same for the intra- and in-
termolecular potential. Approximation: transferability of
potential parameters for their use with a slightly different
molecular geometry. 2) The intra- or the intermolecular
potential is parametrized with respect to only some of the
atomic nuclei. Approximation: the easiest approach is to
simplify the more complete potential until the intra- and
intermolecular potentials are tuned. 3) For the intermolec-
ular potential additional interaction sites are defined that
are not located on atomic nuclei. Approximation: interac-
tions with these sites have to be formulated as functions
of the atomic nuclei.

3 Spectroscopic methods based on normal
modes

Using the total cluster potential V tot of equation (13)
standard spectroscopic methods can be applied to calcu-
late the vibrational energy levels. First of all, the min-
ima on the total cluster PES are needed. Since the deter-
mination of the global minimum requires the calculation
of many local minima, this can be quite a time consum-
ing task. Therefore we suggest a stepwise procedure: in
the first step we calculate minima on the intermolecu-
lar PES V int(τ1, . . . , τM ). This reduces the dimension of
the configurational space drastically and therefore saves
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a large amount of computer time. Nevertheless the most
important features of the potential that determine the
cluster structure are included. Local minimum configu-
rations (τ1, . . . , τM ) serve as input for the total cluster
PES. In the second step we further minimize the input
configuration on the total cluster PES. Usually only mi-
nor configurational changes occur during the second min-
imization step. However, some cluster configurations may
be unstable and disappear while others may be distorted
in an unphysical way. Unstable structures are interest-
ing, since their disappearance may change the interpreta-
tion of an experimental spectrum. Unphysical distortion
of structures merely indicates the breakdown of the po-
tential ansatz.

3.1 Normal mode analysis

To calculate the harmonic vibrational energy eigenvalues
the total cluster potential V tot is expanded in a series
around the global minimum configuration. In principle, it
is possible at this point to introduce further internal co-
ordinates for the intermolecular degrees of freedom and
to expand the series with respect to the internal coordi-
nates of the cluster. Wilson’s FG-method would be the
standard scheme to solve this problem [12]. The most im-
portant reason for using internal coordinates is the im-
proved convergence of the total potential energy and a
weaker coupling between these coordinates in compari-
son with (mass-weighted) Cartesian coordinates. Further-
more, translational and rotational motion of the cluster is
excluded from the problem. Certainly, when using expen-
sive ab initio force fields the choice of internal coordinates
is appropriate. However, we are using a comparatively
crude PES. Therefore and because of the tremendous sim-
plification of the problem, we prefer the expansion of the
total cluster PES in mass-weighted Cartesian coordinates
up to quadratic terms

di =
√
mi(xi − x

0
i ), i = 1, . . . , 3N. (14)

Especially we are thus saving the introduction of internal
coordinates for the intermolecular degrees of freedom for
each cluster size and, in general, even for each isomer.

The cluster Hamiltonian is given by

H = T + V (15)

=
1

2

∑
i

ḋ
T

i ḋi +
1

2

∑
i,j

dTi F dj (16)

=
1

2

∑
i

(Q̇
T

i
Q̇
i
) +

1

2

∑
i

(QT

i
ΛQ

j
), (17)

where F is the quadratic force constant matrix
(
∂2V tot

∂di∂dj

)
i,j

which is calculated numerically using an O(h4) algorithm,
which is presented in Appendix A, Qi is a normal coordi-
nate, and l is the linear transformation matrix that con-
nects mass-weighted Cartesian coordinates with normal

coordinates

d = l Q. (18)

The matrix Λ = lTF l is diagonal and contains the eigen-

values ω2
i . Since normal coordinates Q

i
and Q

j
are orthog-

onal, the harmonic cluster Hamiltonian can be written as

H =
1

2

∑
i

(
Q̇2
i + ω2

iQ
2
i

)
. (19)

The eigenvalues ω2
i and the linear transformation matrix l

are calculated numerically using, for example, the Jacobi
or the Householder algorithm. Both algorithms produce
orthogonal matrices even for degenerate modes, which will
be of importance for the anharmonic treatment of degen-
erate terms.

At this point it seems appropriate to introduce dimen-
sionless normal coordinates qi and their conjugate mo-
menta pi for obvious reasons

q
i

=
3N∑
a=1

lia

√
2πcωi
~

Aad̂a =

√
2πcωi
~

Q
i

and (20)

p
i

=
3N∑
a=1

lia

√
1

2π~cωi
Ȧad̂a =

√
1

2π~cωi
P i, (21)

where d̂a is a Cartesian unit vector and Aa, Ȧa are am-
plitudes. Typically units are chosen so that ωi is given
in wavenumbers. In dimensionless normal coordinates the
vibrational harmonic Hamiltonian is given by

hc

2

3N−6∑
i=1

ωi
(
p2
i + q2

i

)
. (22)

3.2 Anharmonic corrections

Often there is only a rather poor agreement between ex-
perimental and theoretical values in the harmonic approx-
imation. Therefore an expansion of V tot with respect to
normal coordinates is required that includes cubic and
higher terms. Since V tot is given as a function of mass-
weighted Cartesian coordinates we have to calculate

V tot =
1

2

∑
i,j

∑
a,b

∂2V tot

∂da∂db
lailbjQiQj

+
1

6

∑
i,j,k

∑
a,b,c

∂3V tot

∂da∂db∂dc
lailbjlckQiQjQk + . . . (23)

This expression can be easily evaluated numerically, how-
ever, the calculation can be quite time consuming. We can
save computer time by introducing an approximation that
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exploits the information given by the l-matrix. For a single

derivative of V tot with respect to qi we find

∂V tot

∂Qi
≈
V tot(d0 + h

∑
a liad̂a)− V tot(d0)

h
, (24)

where d0 denotes the minimum configuration in mass-

weighted Cartesian coordinates and d̂a is a unit vector. Of
course, this procedure can be easily generalized to higher
derivatives. Again we used a difference quotient with an er-
ror term O(h4) for the actual calculation, see Appendix A.

If cubic and quartic force constants are taken into ac-
count, an anharmonic vibrational Hamiltonian can be de-
rived from Watson’s vibration-rotation Hamiltonian which
takes the form [13]

H

hc
=

1

2

∑
i

ωi(p
2
i + q2

i )+
1

6

∑
ijk

φijkqiqjqk

+
1

24

∑
ijkl

φijklqiqjqkql+
∑
α

Bαπ
2
α, (25)

where ωi, φijk , φijkl are force constants, Bα, α = x, y, z
are the usual rotational constants (in the following course
of this paper we denote them by A,B,C, where by conven-
tion A ≥ B ≥ C), and πα denotes the vibrational angular
momentum. Bα is given by

Bα =
~2

2hcI0
αα

, (26)

where I0
αα denote the principle moments of inertia of the

minimum configuration of the cluster. The vibrational an-
gular momentum πα is given by

πα =
∑
ij

ζαij

√
ωj

ωi
qipj , (27)

where ζαij =
∑
k(lβkil

γ
kj − l

γ
kil

β
kj), α, β, γ ∈ {x, y, z} cyclic,

i, j, k = 1, . . . , 3N − 6 are the Coriolis coupling constants.
The Hamiltonian of equation (25) cannot be solved an-

alytically and therefore approximative schemes have to be
employed. Second order perturbation theory and a vari-
ational calculation are standard approaches and we want
to mention both of them.

3.3 Perturbation approach

For asymmetric tops (A 6= B 6= C) non-degenerate second
order perturbation theory yields vibrational energy levels
[13]

E(v) =
∑
i

ωi

(
vi+

1

2

)
+
∑
i≥j

χij

(
vi+

1

2

)(
vj+

1

2

)
+ . . . , (28)

where the anharmonicity constants χij are given by

χii =
1

16
φiiii −

1

16

∑
k

φ2
iik

8ω2
i − 3ω2

k

ωk(4ω2
i − ω

2
k)

(29)

for diagonal terms and

χij =
1

4
φiijj−

1

4

∑
k

φiikφkjj

ωk

−
1

2

∑
k

φijk
ωk(ω2

k − ω
2
i − ω

2
j )

∆ijk

+
{
A(ζaij)

2+B(ζbij)
2+C(ζcij)

2
}(ωj

ωi
+
ωi

ωj

)
(30)

for off-diagonal terms and

∆ijk = (ωi + ωj + ωk)(ωi − ωj − ωk)

×(−ωi + ωj − ωk)(−ωi − ωj + ωk). (31)

For symmetric tops with vibrational energy levels of twofold
degeneracy formulae were developed that are similar in
structure to equations (28-31) [13], but nevertheless they
are more complicate and more difficult to handle in a com-
puter program. It is, however, unnecessary to use them as
long as routines are employed for the diagonalization of
the quadratic force constant matrix F that produce an
orthogonal transformation matrix l. Although we partly
used the explicit formulae for twofold degeneracies given
in [13] we do not recommend their use.

3.4 Accidental degeneracies

Inspection of the denominator ∆ijk in equation (30) re-
veals the well-known fact that Fermi resonances may lead
to at least a partial breakdown of the perturbational treat-
ment. To avoid the most probable Fermi resonances, we
therefore used a simplified Hamiltonian for intramolecular
line shift calculations that neglects all couplings induced
by cubic and quartic force constants between intra- and
intermolecular modes. Rotationally induced couplings are
included, however.

H =
M∑
m=1

(
1

2

3Nm−6∑
a=1

ωa,m(p2
a,m + q2

a,m)

)

+
M∑

m,n,o=1

(
1

6

3Nm−6∑
a=1

3Nn−6∑
b=1

3No−6∑
c=1

φabc,mnoqa,mqb,nqc,o

)

+
M∑

m,n=1

(
1

24

3Nm−6∑
a=1

3Nn−6∑
b=1

φaabb,mnq
2
a,mq

2
b,n

)
+
∑
α

Bαπ
2
α,

(32)

where ωa,m, φabc,mno, φaabb,mn denote “intramolecular”
modes and force constants, respectively. Only quartic force
constants φaabb,mn are calculated, following the perturba-
tional result in equations (28-31).
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3.5 Variational approach

The ansatz of equation (32) reduces the number of pos-
sible Fermi resonances drastically, however, they do not
disappear. Therefore we alternatively employed the linear
variational ansatz

χ =
∑
a

ca|ua〉, (33)

for the vibrational wave function χ, where ca are param-
eters that have to be determined and |ua〉 is given by

|v1,1 v2,1 . . . , v3NM−6,M 〉 =
M∏
m=1

Nm−6∏
a=1

|va,m〉, (34)

where |va,m〉 denotes the one dimensional state of normal
mode a localized in molecule m. For the actual calculation
of the eigenvalue problem

det(〈vb|H|va〉 −Eδab) = 0 (35)

the Hamiltonian matrix of equation (32) is still too large.
We therefore built up and diagonalized a matrix for each
mode a in molecule m that is of interest

Hvar =
1

2
ωa,m(p2

a,m + q2
a,m)

+
M∑

n,o=1

(
1

6

3Nn−6∑
b=1

3No−6∑
c=1

φabc,mnoqa,mqb,nqc,o

)

+
M∑
n=1

(
1

24

3Nn−6∑
b=1

φaabb,mnq
2
a,mq

2
b,n

)
. (36)

The rotational influence on the vibrational energy levels∑
αBαπ

2
α is still taken into account via perturbation the-

ory.
As regards the number of states which we are tak-

ing into account in our calculation we distinguish between
mode ωa,m of interest with quantum number va,m ≤ na,m
and all other modes ωb,n (b 6= a ∧ n 6= m) with quantum
numbers vb,n ≤ n. All diagonal matrix elements

〈va,m vb,n|H
var|va,m vb,n〉

and

〈va,m vb,n = 1 vc,o = 1|Hvar|va,m vb,n = 1 vc,o = 1〉

(b 6= a ∧ n 6= m; c 6= a ∧ o 6= m; b 6= c ∧ n 6= o) are taken
into account and their corresponding off-diagonal terms.
For a cluster consisting of different types of molecules the
number N of harmonic oscillator basis functions which we
are taking into account is given by

N = (na,m + 1)

{
1 + n

(
M∑
m=1

(3Nm − 6)

)

+
1

2

(
M∑
m=1

(3Nm−6)−1

)(
M∑

m′=1

(3Nm′−6)−2

)}
. (37)

This expression simplifies for a cluster of identical molecules
to

N = (na,m + 1)

{
2− n

+M(3N − 6)

(
n+

M(3N − 6)− 3

2

)}
. (38)

For all results given in Section 4, na,m = n = 4 was chosen.

3.6 Infrared intensities

The infrared intensity in the harmonic approximation of a
fundamental excitation is proportional to
〈va,m = 1|µ

clu
|va,m = 0〉 , where µ

clu
is the dipole mo-

ment operator as a function of normal coordinates. Under
the assumption that the charge distribution is described
by partial charges ci on the atomic interaction sites which
do not vary for small deviations from their original posi-
tions, this expression may be written as

〈va,m = 1|µ
clu
|va,m = 0〉

=

〈
va,m = 1

∣∣∣∣∣µ0
+

3N−6∑
i=1

∂µ
clu

∂qi
qi

∣∣∣∣∣ va,m = 0

〉

=
1
√

2

∑
b

∂µ
clu

∂db

∂db

∂qa,m

=
1
√

2

∑
b

cb

√
~

2πcωa,m
lb(a,m)d̂b. (39)

In the following discussion only relative intensities are
given.

4 Frequency shifts in small methanol clusters

4.1 Intermolecular potential

The Optimized Potential for Liquid Simulation (OPLS) by
Jorgensen [14] for methanol was used for the intermolec-
ular interaction which is represented analytically for two
molecules m and n by

umn =
∑
a∈m

∑
b∈n

(
1

4πε0

cacbe
2

Rab
+
Aab

R12
ab

−
Cab

R6
ab

)
, (40)

where ca denotes a partial charge in molecule m, cb de-
notes a partial charge in molecule n, Rab is the distance
between site a in molecule m and site b in molecule n,
and Aab, Cab are given by the combination rules Aab =√
AaaAbb and Cab =

√
CaaCbb, where Aaa = 4εaσ

12
a and

Caa = 4εaσ
6
a, and εa, σa are Lennard-Jones parameters.

All potential parameters are given in Table 1.
For the construction of the interaction model, trans-

ferability of potential parameters from other models was
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assumed which were optimized later by fitting calculated
macroscopic quantities of the liquid phase to experimental
data. To effectively account for three-body forces in the
liquid phase the static dipole moment was deliberately
chosen too large. It overestimates the experimental value
by about 25%. The geometry of the effective molecule is
given in Table 2.

Cluster structures up to the hexamer were calculated
by Buck and Schmidt [6]. For M = 3−6 ring structures are
found for the lowest energy configurations with
C3h-, C4h-, C1-, and S6-symmetry, respectively. The bind-
ing energies from dimer to hexamer are given by -28.5,
-73.4, -124.8, -166.2, and -204.1 kJ mol−1. The overesti-
mated static dipole moment leads especially for the dimer
to an overestimated binding energy. Minimizing the to-
tal cluster PES further increases the binding energies and
yields from dimer to hexamer -29.2, -75.9, -129.9, -173.1,
and -212.6 kJ mol−1.

4.2 Intramolecular interaction

The anharmonic SCF force field by Schlegel et al. [15] is
defined for all 6 atomic sites of the methanol molecule.
Obviously our chosen intra- and intermolecular potentials
are not tuned to each other. We follow our simple recipe
of Sections 2.1 and 2.2 and simplify the intramolecular
force field. Using the molecular geometry of Table 2, we
take the corresponding diagonal force constants faa, faaa,
and faaaa as input parameters. Only the quadratic force
constants are fitted so that the anharmonic fundamental
frequencies ν1 (OH-stretch), ν2 (COH-bend), and ν3 (CO-
stretch) are equal to the experimental gas phase values at
3681.5 cm−1 for the OH-stretch mode, 1334.0 cm−1 for
the COH-bend mode and 1033.5 cm−1 for the CO-stretch
mode using the perturbation approach of Section 2. All
relevant force constants are given in Table 3.

4.3 Frequency shifts

As described above the potential model restricts us to the
investigation of the OH-stretch, COH-bend, and

Table 1. Geometrical parameters of the methanol monomer.

bond lengths Å bond angle degree

O-H 0.945 COH 108.5

C-O 1.430

Table 2. OPLS parameter values for methanol.

site qa, |e| σa, Å εa, kJ mole−1

C +0.265 3.84 0.799

O −0.700 3.07 0.711

H +0.435 – –

Table 3. Effective force field for methanol. The effective
quadratic force constants are denoted by feff

aa . All other val-
ues are taken from reference [15]. Quadratic and cubic bend-
ing force constants are given in mdyne Å, quadratic, cubic,
and quartic stretching force constants are given in mdyne Å−1,
mdyne Å−2, and mdyne Å−3, respectively.

type OH-str. CO-str. COH-bend.

faa 8.3910 5.7230 0.8440

feff
aa 8.2827 5.3431 0.8442

faaa -59.8800 -31.8260 -1.4310

faaaa 420.6690 203.3250 –

CO-stretch mode. Experimental band shift measurements
for size selected clusters are available for the CO-stretch
mode from the dimer to the hexamer [5] and for the OH-
stretch mode for the dimer and trimer [16,17]. In Table 4
we list all experimental results along with theoretical re-
sults in various approximations. M1 denotes results calcu-
lated within the molecular approach of Buck and Schmidt
[6], M2 denotes the molecular approach of Beu [8], C1, C2,
and C3 denote the cluster approach described in Section 2
and 3 in the harmonic (C1) and the anharmonic approx-
imation using second order perturbation theory (C2) or
a variational calculation (C3). C1SCF denotes the cluster
approach in the harmonic approximation, however, using
a complete SCF force field by Bleiber and Sauer [11]. Not
given in the table are similar SCF results by Mó et al. [18]
for the dimer and trimer.

In Figure 1 the experimental results are shown for the
CO-stretch mode for m = 2−6 together with calculated
stick spectra representing variational results (C3) for the
line shifts and harmonic values for the relative intensities.

For the dimer CO-stretch mode the C1-, C2-, and
C3-results are in much better agreement with the experi-
mental values than those obtained with the molecular ap-
proaches M1 and M2. The line splitting is underestimated
by about 35% which is in agreement with the M2 result,
but the overall position of the two lines is only correct for
the cluster approaches. Hence, especially the experimental
acceptor redshift can be confirmed. The anharmonic con-
tributions are negligible for the dimer CO-stretch modes
and small for the other cluster sizes. As expected, the an-
harmonic contributions are more pronounced for the OH-
stretch modes but still they are rather small. Although an
improvement can be observed from C1 to C3 the agree-
ment with the experimental data remains poor. The C3
donor line shift exceeds the experimental value at
−107 cm−1 by more than 100 cm−1.

Only one infrared active OH-stretch mode is found for
the trimer using the OPLS-potential, however, three dis-
tinct lines are found in the experiment and using the SCF
force field. The agreement between experimental and the-
oretical values remains poor in all cases. For the bands an
almost constant line splitting of about 40 cm−1 is found.
The C1SCF values consist of two narrow lying lines with
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Table 4. Experimental band shifts of methanol clusters and theoretical values for the energetically most stable structures
of the OPLS-potential. M is the cluster size, PG the molecular point group, S the symmetry of the normal mode, and ∆ν
denotes the line shift with respect to the monomer gas phase value at 1033.5 cm−1 for the CO-stretch mode and 3681.5 cm−1

for the OH-stretch mode; exp denotes experimental values taken from references [5,16,17], M1 and M2 are calculated values
using the molecular approach taken from references [6] and [8], C1SCF are harmonic values from SCF calculations [11], and
C1, C2, and C3 are values computed for this work in the harmonic approximation (C1), the anharmonic approximation using
a perturbational calculation (C2) and a variational calculation (C3).

M PG Mode Exp S ∆ν, cm−1

M1 M2 C1SCF C1 C2 C3
2 CO − 7 a 1 2 − 13 − 5 − 5 − 5

19 a 29 18 12 13 14 14
3 C3h e′ 4 23 13 14 17
3 C1 8 a − 2, 1, 9
4 C4h 11 eu 25 26 18 23 23
4 S4 b − 3

e 1
5 14 a 17 24 − 3 12 14 18

a 21 24 − 2 13 16 19
a 28 28 3 15 18 19
a 5 15 19 21
a 11 16 19 22

6 S6 7 au 33 23∗ − 3 10 11 15
19 eu 17 29∗ 4 13 15 19

2 OH − 107 a − 239 − 222 − 78 − 261 − 234 − 211
3 a 21 − 43 − 3 − 35 − 25 − 26

3 C3h e′ − 262 − 233
3 C1 − 172,− 211,− 248 a − 116,− 120,− 150
4 C4h eu − 352 − 302
4 S4 b − 177

e − 199
5 a − 194 − 347 − 295

a − 201 − 348 − 296
a − 227 − 379 − 323
a − 234 − 379 − 323
a − 274 − 410 − 349

6 S6 au − 203 − 347 − 295
eu − 250 − 389 − 333

∗No symmetry of modes given.

a line splitting of only 5 cm−1 and another band at a
distance of about 30 cm−1. The overall band shift is un-
derestimated by about 80 cm−1 with respect to the exper-
imental evidence.

In the second lowest panel of Figure 1 only one
Lorentzian curve is fitted to the experimental data mea-
sured in the region of the CO-stretch mode. However, the
linewidth is remarkably broad and at about 1040 cm−1

and 1045 cm−1 structures can be observed in the data
points that might be attributed to different bands.

The experimental data for the tetramer and pentamer
in Figure 1 in the region of the CO-stretch mode dif-
fer in their line shift as well as in their line shape. The
line width of the pentamer curve is broader than that
of the tetramer curve. This corresponds to the C3-result
depicted in Figure 1 in which 5 lines contribute to the ex-
perimental spectrum while only one line contributes to the
tetramer spectrum. Up to the pentamer the experimental
data show an increasing overall blueshift that is confirmed
by the C3-values only up to the tetramer. The C1-, C2-,

and C3-values overestimate the overall blueshift, however,
the results obtained in the M1- and M2-approximation are
improved. For the C1SCF-values two infrared active lines
are found for the tetramer and five for the pentamer which
both do not agree well to the experimental data.

For the hexamer there is a qualitative agreement be-
tween the experimental results in the region of the CO-
stretch mode and the theoretical results, i.e. only two in-
frared active modes can be observed. In no approxima-
tion a quantitative agreement to the experimental data is
achieved.

5 Discussion

A formal construction scheme has been given for a total
cluster PES using decoupled intra- and intermolecular po-
tentials. This ansatz was used previously by Reimers and
Watts for the calculation of vibrational spectra of small
water clusters without giving explicit formulae for the
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Fig. 1. Comparison of experimental data taken from refer-
ence [5] with theoretical line shift calculations in the vari-
ational approximation from dimer to hexamer for the CO
stretch mode. The dotted line indicates the monomer value
at 1033.5 cm−1. The upper abscissa denotes line shifts with
respect to the monomer value while the lower abscissa gives
the absolute values.

total cluster potential [10]. Standard spectroscopic meth-
ods could be applied to calculate harmonic (C1) or an-
harmonic (C2 or C3) vibrational spectra and converts the
procedure into a flexible theoretical instrument. Reimers
and Watts introduce internal coordinates for the inter-
molecular degrees of freedom which requires much more
effort for larger clusters than our simple approach using
mass-weighted Cartesian coordinates for the representa-
tion of the total cluster PES. Since the minimization pro-
cess implies a rather crude approximation of the total clus-
ter PES, the use of mass-weighted Cartesian coordinates
seems to be a justified simplification.

Reimers and Watts come to the conclusion that in the
anharmonic treatment the use of local modes is prefer-
able over normal modes. Della Valle has shown, however,
that there is a mapping between a local mode Hamilto-
nian and a normal mode Hamiltonian including the off-
diagonal terms of operators qaqbqcqd [19]. The discrepancy

in the results using local modes and normal modes in refer-
ence [10] can be explained by the fact that only diagonal
force constants are used for the normal modes which is
not sufficient, if results are compared with local modes.
Therefore we recommend the use of the simpler normal
modes, however, with off-diagonal terms included in the
calculation.

The molecular approach of Beu [8] is more difficult to
handle in comparison to the cluster approach. As long as
the description of the total cluster PES by intra- and inter-
molecular potentials holds, results of the cluster approach
should be more accurate, since already in the harmonic
approximation the coupling of intra- and intermolecular
modes is accounted for. Symmetry properties of the clus-
ter are simply included in this approach. They make, how-
ever, complicated calculations necessary for the molecular
approach. Intermolecular modes can easily be calculated
using the total cluster PES, they are not available within
the molecular approach.

The results obtained with the cluster approach (C1,
C2, C3) are in much better agreement with the exper-
imental results than those obtained with the molecular
approaches (M1, M2). The reason for this lies not only
in the methodology of the line shift calculation but also
in the modification of the intramolecular potential. This
stresses the necessity of the tuning process of the intra-
and intermolecular input potentials.

Although considerable improvements could be achieved
concerning the CO-stretch mode, objections have to be
made concerning the use of the OPLS-potential. Since it
is fitted mainly to properties of the liquid bulk, it might
not be surprising that there are deficiencies in the micro-
scopic range. In particular, the planarity of the lowest en-
ergy trimer with C3h-symmetry and of the tetramer with
C4h-symmetry is somewhat questionable, since it contra-
dicts the idea of a linear hydrogen bond in small methanol
clusters. The simple reason is that in a planar ring it is im-
possible to define a unique hydrogen bond, since the tetra-
hedral structure of the sp3-orbitals of the oxygen atoms
offers the choice between two equivalent bonds. Hence we
expect a distinct deviation from a planar ring structure
as is found, for example, for the pentamer and the hex-
amer. Furthermore SCF calculations confirm for the en-
ergetically most stable structures a distorted ring for the
trimer and a ring with S4-symmetry for the tetramer [11,
18]. Experimental results for the OH-stretch mode [17]
clearly show that a planar ring configuration is not ob-
served. For water clusters, for which a similar electronic
structure of the O-atoms is found, non-planar structures
for the lowest energy trimer and tetramer configurations
were found [10,20]. One important conclusion is that the
OPLS-potential represents the anisotropy especially of the
electrostatic part of the intermolecular methanol interac-
tion only unsatisfactory.

In Section 4 we found surprisingly small anharmonic
corrections especially for the OH-stretch mode. This may
partly be attributed to the unrealistic repulsive part of the
OPLS-potential which exaggerates the steepness of the re-
pulsive branch of the interaction potential. For the static
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dipole moment of the OPLS-model, which was chosen to
exceed the experimental value by about 25%, it is noted
that this could be useful for the simulation of liquid bulk
properties. There are, however, serious consequences for
the OH-stretch mode of the donor molecule, since the hy-
drogen atoms are directly bound in the hydrogen bond
which may partly explain the large deviation from the ex-
perimental donor frequency shift by more than 100 cm−1

for the dimer.
Table 4 shows that especially for the dimer OH-stretch

mode the harmonic SCF-values are in better agreement
with the experimental values than those calculated with
the OPLS-potential. The general agreement, however, be-
tween the experimental data and the theoretical values
is still rather poor. An anharmonic treatment seems nec-
essary even for the CO-stretch modes and it is manda-
tory for the OH-stretch mode. On the other hand, it is
too expensive to calculate an anharmonic force field for
large clusters. The basis set superposition error is a severe
problem which might be avoided, if one uses intermolec-
ular potentials that are based on monomer wave func-
tions only. Therefore it seems quite competitive to use
precise intermolecular potential models in combination
with intramolecular force fields. The intermolecular poten-
tial model may even include correlation effects by fitting
calculated properties to experimental data and thereby
improving the appropriate potential parameters. An ap-
proach along these lines is in preparation and will appear
soon [21].

We conclude that the cluster approach is a flexible in-
strument for calculating cluster frequencies for intramolec-
ular as well as intermolecular modes. For methanol a more
sophisticated intermolecular potential model is needed that
incorporates a better representation of the electrostatic in-
teraction and a more realistic functional description of the
repulsive interaction.
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Appendix A

Numerical differentiation formulae

It proved necessary during our investigation to put some
effort into the calculation of the numerical force constants
of equations (16, 32). A convenient method is based on
a variant of the Lagrange interpolation formula for equal
intervals given by [22]

f(x)=
(−1)nt(t− 1) . . . (t− n)

n!

n∑
i=0

(−1)iCinyi
t− i

+hn+1t(t− 1) . . . (t− n)f(x;x0;x1; . . . ;xn), (41)

where t = x−x0

h
and therefore dx = h dt. n + 1 is the

number of nodes, Cin denotes the binomial coefficient and
yi is the functional value at node xi. The cluster poten-
tial function is approximated by the Lagrange polynomial
in the minimum configuration for which analytical deriva-
tives easily can be calculated. The number of nodes taken
into account determines the error term and the computer
time that is needed for the calculation.

O(h4) formulae

y
(1)
2 =

1

12h
[y0−8y1+8y2−y3]+O(h4), (42)

y
(2)
2 =

1

24h2
[−2y0+32y1−60y2+32y3−2y4]+O(h4), (43)

y
(3)
3 =

1

8h3
[y0−8y1+13y2−13y4+8y5+y6]+O(h4), (44)

y
(4)
3 =

1

6h4
[−y0+12y1−39y4 + 12y5−y6]+O(h4). (45)
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